Shamos Estimator
Suggested in Geometry and Statistics: Problems at the Interface
By Michael Ian Shamos
·
1976shamos1976 (page 260), a robust measure of scale/spread.
For a sample $\mathbf{x} = \{ x_1, x_2, \ldots, x_n \}$, it is defined as follows:
$$ \operatorname{Shamos}_n = C_n \cdot \underset{i < j}{\operatorname{median}} (|x_i - x_j|), $$where $\operatorname{median}$ is a median estimator, $C_n$ is a scale factor,
which is usually used to make the estimator consistent
for the standard deviation under the normal distribution.
The asymptotic consistency factor: $C_\infty \approx 1.048358$.
The asymptotic Gaussian efficiency is of $\approx 86\%$; the asymptotic breakdown point is of $\approx 29\%$.
The finite-sample consistency factor and efficiency values can be found in Investigation of finite-sample properties of robust location and scale estimators
By Chanseok Park, Haewon Kim, Min Wang
·
2020park2020.
In Alternatives to the Median Absolute Deviation
By Peter J Rousseeuw, Christophe Croux
·
1993rousseeuw1993,
it is claimed that the Rousseeuw-Croux estimator is a good alternative with much higher breakdown point of $50\%$
and slightly decorated statistical efficiency (the asymptotic value is of $\approx 82\%$).
However, for small samples the efficiency gap is huge, so I prefer the Shamos estimator.
See also
Investigation of finite-sample properties of robust location and scale estimators · 2020
· Chanseok Park
et al.
Alternatives to the Median Absolute Deviation · 1993
· Peter J Rousseeuw
et al.
Geometry and Statistics: Problems at the Interface · 1976
· Michael Ian Shamos
Implementations
shamos.bias <- c(
NA, 0.1831500, 0.2989400, 0.1582782, 0.1011748, 0.1005038, 0.0676993,
0.0609574, 0.0543760, 0.0476839, 0.0426722, 0.0385003, 0.0353028, 0.0323526,
0.0299677, 0.0280421, 0.0262195, 0.0247674, 0.0232297, 0.0220155, 0.0208687,
0.0199446, 0.0189794, 0.0182343, 0.0174421, 0.0166364, 0.0160158, 0.0153715,
0.0148940, 0.0144027, 0.0138855, 0.0134510, 0.0130228, 0.0127183, 0.0122444,
0.0118214, 0.0115469, 0.0113206, 0.0109636, 0.0106308, 0.0104384, 0.0100693,
0.0098523, 0.0096735, 0.0094973, 0.0092210, 0.0089781, 0.0088083, 0.0086574,
0.0084772, 0.0082120, 0.0081874, 0.0079775, 0.0078126, 0.0076743, 0.0075212,
0.0074051, 0.0072528, 0.0071807, 0.0070617, 0.0069123, 0.0067833, 0.0066439,
0.0065821, 0.0064889, 0.0063844, 0.0062930, 0.0061910, 0.0061255, 0.0060681,
0.0058994, 0.0058235, 0.0057172, 0.0056805, 0.0056343, 0.0055605, 0.0055011,
0.0053872, 0.0053062, 0.0052348, 0.0052075, 0.0051173, 0.0050697, 0.0049805,
0.0048705, 0.0048695, 0.0048287, 0.0047315, 0.0046961, 0.0046698, 0.0046010,
0.0045544, 0.0045191, 0.0044245, 0.0044074, 0.0043579, 0.0043536, 0.0042874,
0.0042520, 0.0041864)
shamos.asympt <- 0.9538726
shamos.factor <- function(n) ifelse(
n <= 100,
1 / (shamos.asympt * (1 + shamos.bias[n])),
1 / (shamos.asympt * (1 + 0.414253297 / n - 0.442396799 / n^2)))