# Extended P² quantile estimator

I already covered the P² quantile estimator and its possible implementation improvements in several blog posts. This sequential estimator uses $$O(1)$$ memory and allows estimating a single predefined quantile. Now it’s time to discuss the extended P² quantile estimator that allows estimating multiple predefined quantiles. This extended version was suggested in the paper “Simultaneous estimation of several percentiles”. In this post, we briefly discuss the approach from this paper and how we can improve its implementation.

### The extended P² quantile estimator

The P² quantile estimator (see [Jain1985]) that estimates the $$p^\textrm{th}$$ quantile suggest maintaining a list of five markers:

• $$q_0$$: The minimum
• $$q_1$$: The (p/2)-quantile
• $$q_2$$: The p-quantile
• $$q_3$$: The ((1+p)/2)-quantile
• $$q_4$$: The maximum

The $$q_i$$ values are known as the marker heights.

Also, we have to maintain the marker positions $$\{ n_0, n_1, n_2, n_3, n_4 \}$$. These integer values describe actual marker indexes across obtained observations at the moment.

Next, we have to define the marker desired positions $$\{ n'_0, n'_1, n'_2, n'_3, n'_4 \}$$. For the first $$n$$ observations, these real values are defined as follows:

• $$n'_0 = 0$$
• $$n'_1 = (n - 1) p / 2$$
• $$n'_2 = (n - 1) p$$
• $$n'_3 = (n - 1) (1 + p) / 2$$
• $$n'_4 = (n - 1)$$

The paper suggests simple logic that invalidates all of these values on each new observation.

Now let’s consider the extended P² quantile estimator (see [Raatikainen1987]) that estimates $$m$$ quantile values $$p_0, p_1, \ldots, p_{n-1}$$. In order to do it, we need $$2m+3$$ markers: $$m+2$$ principle markers and $$m+1$$ middle markers. These markers are defined as follows:

• $$q_0$$: The minimum (principle marker)
• $$q_1$$: The $$(p_0/2)$$-quantile (middle marker)
• $$q_2$$: The $$(p_0)$$-quantile (principle marker)
• $$q_3$$: The $$((p_0+p_1)/2)$$-quantile (middle marker)
• $$\ldots$$
• $$q_{2m-1}$$: The $$((p_{n-2}+p_{n-1})/2)$$-quantile (middle marker)
• $$q_{2m}$$: The $$(p_{n-1})$$-quantile (principle marker)
• $$q_{2m+1}$$: The $$((p_{n-1}+1)/2)$$-quantile (middle marker)
• $$q_{2m+2}$$: The maximum (principle marker)

The marker desired locations are defined correspondingly.

The marker invalidation logic matches the original scheme of the P² quantile estimator.

### Initialization strategy

Now let’s discuss the initialization strategy. The paper [Raatikainen1987] has the following paragraph:

The initialization of the algorithm requires $$2m+3$$ observations. These observations are sorted and used as the initial heights of the markers, $$q_i=x_{(i)}$$. The actual positions initialize to $$n_i=i$$. This initialization is the simplest one. More sophisticated initializations are possible, but not used in this study. For example, the first $$n'$$ observations are generated and sorted. The actual positions initialize to $$n_i=[d_i]$$, where $$d_i$$ is the desired position of the marker $$i$$. Then it must be checked that the actual positions are strictly increasing. If not, some adjustments must be made. The heights then initialize to $$q_i=x(n_i)$$.

I already covered the initialization strategy importance. My approach matches the $$n_i=[d_i]$$ strategy suggested in the second part of the above quote. Numerical simulations show that it works much better than the simplest one with $$n_i=i$$ (especially on small streams and extreme quantiles).

The marker adjustment order also affects the estimator accuracy. I have already shown it in the previous blog post. The suggested approach could be easily generalized for the extended P² quantile estimator.

In the adjustment stage, we should update markers $$q_1, q_2, \ldots, q_{2m+1}$$ (assuming zero-based indexing). The desired marker locations $$n'_1, n'_2, \ldots, n'_{2m+1}$$ are known. On each step, we consider a list of markers $$q_l, \ldots, q_r$$ that are not adjusted yet (for the first step, $$l=1$$, $$r=2m+1$$). In order to choose the next mark to update, we should compare $$|n'_l/n-0.5|$$ and $$|n'_r/n-0.5|$$. If the first expression is less than or equal to the right expression, we should adjust $$q_l$$. Otherwise, we should adjust $$q_r$$. For details, see the reference implementation.

### Reference implementation

public class ExtendedP2QuantileEstimator
{

public int Count { get; private set; }

public ExtendedP2QuantileEstimator(params double[] probabilities)
{
this.probabilities = probabilities;
m = probabilities.Length;
markerCount = 2 * m + 3;
n = new int[markerCount];
ns = new double[markerCount];
q = new double[markerCount];
}

private void UpdateNs(int maxIndex)
{
// Principal markers
ns = 0;
for (int i = 0; i < m; i++)
ns[i * 2 + 2] = maxIndex * probabilities[i];
ns[markerCount - 1] = maxIndex;

// Middle markers
ns = maxIndex * probabilities / 2;
for (int i = 1; i < m; i++)
ns[2 * i + 1] = maxIndex * (probabilities[i - 1] + probabilities[i]) / 2;
ns[markerCount - 2] = maxIndex * (1 + probabilities[m - 1]) / 2;
}

{
if (Count < markerCount)
{
q[Count++] = value;
if (Count == markerCount)
{
Array.Sort(q);

UpdateNs(markerCount - 1);
for (int i = 0; i < markerCount; i++)
n[i] = (int)Math.Round(ns[i]);

Array.Copy(q, ns, markerCount);
for (int i = 0; i < markerCount; i++)
q[i] = ns[n[i]];
UpdateNs(markerCount - 1);
}

return;
}

int k = -1;
if (value < q)
{
q = value;
k = 0;
}
else
{
for (int i = 1; i < markerCount; i++)
if (value < q[i])
{
k = i - 1;
break;
}

if (k == -1)
{
q[markerCount - 1] = value;
k = markerCount - 2;
}
}

for (int i = k + 1; i < markerCount; i++)
n[i]++;
UpdateNs(Count);

int leftI = 1, rightI = markerCount - 2;
while (leftI <= rightI)
{
int i;
if (Math.Abs(ns[leftI] / Count - 0.5) <= Math.Abs(ns[rightI] / Count - 0.5))
i = leftI++;
else
i = rightI--;
}

Count++;
}

{
double d = ns[i] - n[i];
if (d >= 1 && n[i + 1] - n[i] > 1 || d <= -1 && n[i - 1] - n[i] < -1)
{
int dInt = Math.Sign(d);
double qs = Parabolic(i, dInt);
if (q[i - 1] < qs && qs < q[i + 1])
q[i] = qs;
else
q[i] = Linear(i, dInt);
n[i] += dInt;
}
}

private double Parabolic(int i, double d)
{
return q[i] + d / (n[i + 1] - n[i - 1]) * (
(n[i] - n[i - 1] + d) * (q[i + 1] - q[i]) / (n[i + 1] - n[i]) +
(n[i + 1] - n[i] - d) * (q[i] - q[i - 1]) / (n[i] - n[i - 1])
);
}

private double Linear(int i, int d)
{
return q[i] + d * (q[i + d] - q[i]) / (n[i + d] - n[i]);
}

public double GetQuantile(double p)
{
if (Count == 0)
throw new InvalidOperationException("Sequence contains no elements");
if (Count <= markerCount)
{
Array.Sort(q, 0, Count);
int index = (int)Math.Round((Count - 1) * p);
return q[index];
}

for (int i = 0; i < m; i++)
if (probabilities[i] == p)
return q[2 * i + 2];

throw new InvalidOperationException(\$"Target quantile ({p}) wasn't requested in the constructor");
}

public void Clear()
{
Count = 0;
}
}

• [Jain1985]
Jain, Raj, and Imrich Chlamtac. “The P² algorithm for dynamic calculation of quantiles and histograms without storing observations.” Communications of the ACM 28, no. 10 (1985): 1076-1085.
https://doi.org/10.1145/4372.4378
• [Raatikainen1987]
Raatikainen, Kimmo EE. “Simultaneous estimation of several percentiles.” Simulation 49, no. 4 (1987): 159-163.
https://doi.org/10.1177/003754978704900405